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Abstract. Following recent work by Lambiase and Nesterenko we study in detail the interquark potential
for a Nambu–Goto string with point masses attached to its ends. We obtain accurate solutions to the
gap equations for the Lagrange multipliers and metric components and determine the potential without
simplifying assumptions. We also discuss the Lüscher term and argue that it remains universal.

1 Introduction

There has been considerable effort in trying to understand
the forces between quarks in terms of strings, and several
models have been proposed with different degrees of suc-
cess. The Nambu–Goto model [1], which is a direct gen-
eralization of the covariant action for a relativistic point
particle moving in space-time, describes the evolution of
a string. When this string evolves it sweeps out a two-
dimensional world sheet surface embedded in a higher-
dimensional space-time. The area of this surface is pre-
cisely the Nambu–Goto action. Close to this are the gener-
alized Eguchi models [2] of which Schild’s [3] is a particular
case. The functional-integral quantization of these models
has been studied by Lüscher, Symanzik and Weisz [4] and
by Alvarez [5], who calculated the static potential in the
large-d limit, where d is the number of dimensions of the
embedding space. The result obtained by Alvarez turned
out to be correct for any d as shown latter by Arviz [6].
The Nambu–Goto string model gives qualitatively encour-
aging results as a large-N QCD string, i.e., the interquark
potential is linear for large distances, which is understood
as a signal of confinement; it also has linear Regge tra-
jectories and presents a transition to a deconfined phase
with vanishing string tension at certain temperature [7].
Quantitatively, however, this model is not in very good
shape, with numerical values closer to those obtained in
Monte Carlo simulations of an SU(2) lattice gauge the-
ory rather than SU(3) [8]. Also, it has been shown [9]
that agreement between the Nambu–Goto string and a
calculation of the high-temperature partition function of
a QCD flux tube would require an infinite number of mas-
sive world-sheet degrees of freedom. Thus, the model has
been modified by populating the string with scalar and
Fermi fields, improving some of the quantitative results
[10]. However, the price to pay is too high since the con-
formal invariance of the theory is explicitly broken [11].

It seems that the Nambu–Goto string or naive modifi-
cations of it will not give us the QCD string. Still the
Nambu–Goto model remains very useful as the simplest
string model where some calculations can be done with-
out undue effort and mathematical methods as well as
new physical ideas can be tested. More elaborated exten-
sions of Nambu–Goto have incorporated an extrinsic cur-
vature term in the action (the so-called rigid or Polyakov–
Kleinert string [12]) and several properties of interest have
been investigated [13]. Rigid strings coupled to long-range
Kalb–Ramond fields have also been studied [14], and more
recently ”confining strings” [15] seem to be very promis-
ing models for the QCD string. In all of these models one
important problem is to determine the potential between
two sources, i.e., the so-called interquark static potential.
This potential has been calculated by various perturba-
tive and non-perturbative methods. The common feature
has been, however, the assumption of infinitely massive
quarks at the ends of the string, which is equivalent to
imposing fixed-ends boundary conditions. In a recent se-
ries of papers a consistent method has been proposed to
study the effects of finite point masses attached to the
ends of the string [16]. In particular a variational estima-
tion of the Nambu–Goto string potential has been worked
out although with some simplifying assumptions[17] and
a more general discussion followed [18].

Here we reconsider this problem and a detailed treat-
ment is presented. Accurate solutions to the gap equations
and a determination of the interquark potential as well as
other quantities of interest are given. Discrepancies with
respect to the original work of [17] are pointed out. We also
provide a discussion of the Lüscher term and argue that it
remains universal with no mass contributions coming from
the point particles attached to the ends of the string, in
disagreement with what is claimed in [17]. In Sect. 2 we
present the model and equations for the Lagrange mul-
tipliers and metric components. We also obtain a very
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simple-looking formula for the interquark potential. The
numerical analysis of the equations and various quantities
of interest is carried out in Sect. 3. We also compare them
with the approximated results in [17]. Finally, Sect. 4 com-
prises a discussion of the Lüscher term and argues that it
remains universal. We conclude with a brief account of our
results.

2 The model and gap equations

At the quantum level the Nambu–Goto model is given by
the functional integral

Z =
∫

[Dxµ]e−S . (2.1)

In Euclidean space the action S is

S = M2
0

∫
d2ξ

√
g +

2∑
a=1

ma

∫
Ci

dsa, (2.2)

where M2
0 is the string tension, Ci (i = 1, 2) are the world

trajectories of the massive ends of the string, and g is the
determinant of the metric

gij = ∂ix
µ(ξi)∂jx

ν(ξi)ηµν , i = 0, 1. (2.3)

The xµ, µ = 0, 1, ..., d − 1 are the string coordinates and
ηµν is the embedding Euclidean metric of the space where
the string evolves. gij is thus the induced metric on the
world sheet swept out by the string. To study the model
further it is convenient to specify a gauge; we choose the
”physical gauge” or Monge parametrization

xµ(ξi) = (t, r, ua(t, r)), (2.4)

where the ~ua(t, r), a = 2, ..., d−1 are the (d−2) transverse
oscillations of the string. We further introduce composite
fields σij given by

σij = ∂i~u · ∂j~u. (2.5)

The metric gij and string coordinates ~u become indepen-
dent fields when (2.3) is introduced as a constraint. This
requires the use of Lagrange multipliers αij which also be-
come independent variables. The functional integral (2.1)
then becomes

Z =
∫

[D~u][Dα][Dσ]e−S(~u,α,σ), (2.6)

where the action (2.2) is now given by

S = M2
0

∫ β

0
dt

∫ R

0
dr

[√
det(δij + σij)

+
1
2
αij(∂i~u · ∂j~u − σij)

]
(2.7)

+
2∑

a=1

ma

∫
dt

√
1 + ~̇u2(t, ra), r1 = 0, r2 = R.

It has been shown by Alvarez that, at the saddle point, the
Lagrange parameters αij as well as the metric components
σij become symmetric constant matrices with no depen-
dence on t and r. Thus while ~u = ~u(t, r) is in general a
function of t and r, ~̇u2 = σ0 becomes, at the saddle point,
a constant. This fact simplifies the problem considerably.
Since the action is quadratic in the string oscillations ~ua

we can do the Gaussian integral inmediately. The result-
ing action, in the particular case where m1 = m2 = m,
can be written as

S(α, σ) = M2
0 βR

[√
(1 + σ0)(1 + σ1) − 1

2
(α0σ0 + α1σ1)

−
√

α1

α0
λ

]
+ 2mβ. (2.8)

Here λ is related to the Casimir energy EC = 1
2

∑∞
k=1 ωk

as follows

λ = − (D − 2)
M2

0 R
EC, (2.9)

and the last term in (2.8) is the contribution to the ac-
tion due to the point masses at the ends of the string. This
term can be set to zero with an appropriate redefinition of
S. Thus we ignore this term in what follows. The Casimir
energy EC depends on the eigenmomenta ωk which in turn
depend on the boundary conditions imposed on the sys-
tem. For a string with infinitely heavy quarks attached to
its ends we impose fixed-ends boundary conditions, in this
case

ωk =
nπ

R
, n = 1, 2, ..., (2.10)

and the Casimir energy is

EC =
1
2

∞∑
k=1

ωk =
π

2R

∞∑
n=1

n = − π

24R
, (2.11)

where the last term was obtained by the use of Riemann’s
ζ-function i.e.,

∞∑
n=1

n =

[ ∞∑
n=1

1
nν

]
ν=−1

= ζ(−1) = − 1
12

.

In the case of finite quark masses the problem becomes
increasingly difficult to deal with even when m1 = m2.
It can be shown that in this case (m1 = m2 = m) the
Casimir energy is given by [17]

EC =
1

2πR

∫ ∞

0
dx ln

[
1 −

(
x − s

x + s

)2

e−2x

]
, (2.12)

where

s =
ρ

µ
α0

√
1 + σ0, (2.13)

and

ρ = M0R, µ =
m

M0
(2.14)
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are dimensionless quantities corresponding to the (extrin-
sic) length and point masses attached to the ends of the
string, respectively. The equation for λ, (2.9), becomes

λ = − (D − 2)
2πρ2 η(s), (2.15)

where

η(s) =
∫ ∞

0
dx ln

[
1 −

(
x − s

x + s

)2

e−2x

]
. (2.16)

This expression for η can be written as

η(s) = Li2(−1/s) − 1/2
3∑

i=1

Li2(1/ri), (2.17)

where Li2(1/ri) are dilogarithm functions and ri are the
roots of

x3 − (1 + 2s)x2 + s(s − 2)x − s2 = 0. (2.18)

Note that

 Li2(x) = −
∫ 1

0

ln(1 − xt)
t

dt = −
∫ x

0

ln(1 − t)
t

dt. (2.19)

It has a branch cut running from 1 to ∞. It is also conve-
nient to write λ in the form

λ =
(D − 2)π

24ρ2 (2.20)

− (D − 2)
2πρ2

∫ ∞

0
dx ln

[
1 +

4sx

(x + s)2
1

e2x − 1

]
.

Note that λ is a function of α0 and σ0 through s, (2.13).
Thus when writing the equations for the Lagrange multi-
pliers and metric components derivatives of λ with respect
to σ0 and α0 should appear. These are given by

α0 =
√

1 + σ1

1 + σ0
−

√
α0α1

1 + σ0

∂λ

∂α0
, (2.21a)

α1 =
√

1 + σ0

1 + σ1
, (2.21b)

σ0 =
1
α0

√
α1

α0
λ − 2

√
α1

α0

∂λ

∂α0
, (2.21c)

σ1 = − 1√
α0α1

λ, (2.21d)

where, in (2.21a), ∂λ/∂σ0 has been replaced by

∂λ

∂σ0
=

α0

2(1 + σ0)
∂λ

∂α0
. (2.22)

The potential V (ρ) is obtained in the usual way, e−βV (ρ) ∼
Z, β → ∞, and is given by the simple-looking formula

V (ρ) = ρα0, (2.23)

Fig. 1. η(s) as a function of log(s), (2.16), which essentially
defines the Casimir energy (2.12). For µ = 0, ∞ the quantity
s given by (2.13) takes the values ∞ and 0, respectively, and
the Casimir energy becomes EC = − π

24R
. This value coincides

with the one obtained for a string with fixed-ends boundary
conditions. We see that η(s) has a maximum at s = s0 ≈ 0.27.
At this point we can obtain an exact analytical solution given
by (3.8)

Fig. 2. The quantity β = ∂η(s)
∂s

is shown as a function of s.
The point s = s0 ≈ 0.27 where β(s0) = 0 corresponds to the
maxima of η(s). From (3.2) we see that c(s0) = 0; (3.5) implies
x = 1 and a particular solution follows (see (3.8))

which follows from (2.8) and the gap equations (2.21). The
potential V (ρ) is also a dimensionless quantity, V (ρ) =
M−1

0 V (ρ). Of course there is no way to solve (2.21) ana-
lytically, thus (2.23) is only a formal expression for V (ρ).
One can play with (2.21) and write an expression for α0:

α0 =

√
1 − 1 + α0α1√

α0α1
λ − (1 − α0α1)

√
α0

α1

∂λ

∂α0
, (2.24)

which will be useful for discussing some limiting situations
in the last section.
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Fig. 3. c(s) (dashed line) and b(s) (solid line) as functions of
s for µ = 10−3 (a) and 103 (b). These quantities are defined
by (3.2) and (3.3), respectively. In a c(s) eventually reaches
a minimum value and then goes up passing through zero at
s = s0. The curve for b(s) is always negative as follows from
(3.3)

3 Numerical analysis

For the numerical analysis of the problem it is more con-
venient to write (2.21) in the form

α0 =
√

1 + σ1

1 + σ0
+ cα0

√
α0α1, (3.1a)

α1 =
√

1 + σ0

1 + σ1
, (3.1b)

σ0 = −α1σ1

α0
+ 2c(1 + σ0)

√
α0α1, (3.1c)

σ1 =
α2

0(1 + σ0)√
α0α1

b, (3.1d)

where

c =
(D − 2)

2π

β(s)
µ2s

, β(s) =
∂η(s)
∂s

, (3.2)

b =
(D − 2)

2π

η(s)
µ2s2 . (3.3)

Combining (3.1a) and (3.1b) we get

α0α1 = 1 + cα0α1
√

α0α1, (3.4)

or

cx3 − x2 + 1 = 0, (3.5)

where

x =
√

α0α1. (3.6)

We can now solve (3.1) in terms of x

α0 =

√
1 + (b − 2c)x

(1 − (b + c)x)(1 − cx)
, (3.7a)

α1 =

√
1 − (b + c)x

(1 + (b − 2c)x)(1 − cx)
, (3.7b)

σ0 = − (b − 2c)x
1 + (b − 2c)x

, (3.7c)

σ1 =
bx

1 − (b + c)x
. (3.7d)

Thus, in the end, everything depends on s and µ. From
(2.13) we can recover the ρ dependence. In Figs. 1–3 we
have the behavior of η, β, c and b as functions of s for
various values of the mass parameter µ. As a curiosity,
where an exact analytical solution can be obtained, we see
in Fig. 1 that η(s) presents a maximum for s = s0 ≈ 0.27;
at this point β = ∂η(s)

∂s vanishes and the problem can be
solved exactly. This point corresponds to the maximum
value of the Casimir energy (2.15) for a given length ρ.
In this point c(s0) = 0 and from (3.5) x = 1. Thus the
solution to the gap equations is

α0 =
√

1 − 2λ, (3.8a)

α1 =
1√

1 − 2λ
, (3.8b)

σ0 =
λ

1 − 2λ
, (3.8c)

σ1 = −λ. (3.8d)

This is an exact solution to the gap equation (3.7) when
the system attains its maximum Casimir energy. In this
simple case we can obtain formulas for ρ2 and V as func-
tions of the dimensionless mass parameter µ. From (2.13),
(3.8a) and (3.8c) we see that

λ = 1 − µ2s2
0

ρ2 . (3.9)

Comparing this with (2.15) we find

ρ = µs0

√
1 − (D − 2)

2π

η(s0)
µ2s2

0
. (3.10)
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The potential can then be written as a function of µ as
follows:

V (µ) = µs0

√
1 +

(D − 2)
2π

η(s0)
µ2s2

0
. (3.11)

Since η(s0) < 0, (3.11) implies that there is a minimum
value of µ for which the potential exists at s = s0, denoting
this value by µmin we see that it is given by

µmin =

√
(D − 2)

2π

|η(s0)|
s2
0

. (3.12)

The general solution of the problem is given by (3.5) and
(3.7). Figure 4 shows the behaviour of α0, α1, σ0 and σ1 as
functions of ρ for various values of the mass parameter µ.
We see that for large ρ, α0 and α1 tend to unity, whereas
σ0 and σ1 approach zero. Thus from (2.13) we see that for
finite µ a large ρ is equivalent to a large s; this will be of
interest when discussing the Lüscher term in the following
section. In Fig. 5 we show the behaviour of the potential
V (ρ) for several values of the mass µ. We see that for big
and small values of µ the curves come close together, in
agreement with (2.12), approaching the Nambu–Goto re-
sult for µ = 0,∞. We also see that the small bump in
Fig. 2 of [17] for µ ≈ 0.3 is not present. This is probably
a numerical artifact. We next show in Fig. 6 the so-called
deconfinement radius ρdec as a function of µ. This is the
value of ρ for which the potential vanishes and probably
signals the presence of the tachyon in string models. Com-
paring this with Fig. 3 of [17] we see that the behaviour is
very similar, avoiding, however, the numerical trick of [17]
at µ ≈ 0.1. Thus we have performed an accurate numerical
investigation of the exact gap equations for the Nambu–
Goto string model with point masses attached to its ends.
There is a substantial departure from the usual Nambu–
Goto model with fixed ends (i.e., infinitely heavy quarks
masses). In particular the deconfinement radius can take
a whole range of values, allowing for a better phenomeno-
logical description of mesonic systems. On the other hand
the typical linear behaviour for large ρ is mantained here.

All these results can be seen in Fig. 5, where the in-
terquark static potential for various µ mass values is com-
pared with the usual Nambu–Goto model.

4 Discussion and conclusions

We have obtained exact results to the problem of quark
mass corrections to the string potential for the Nambu–
Goto model in the case where the masses attached to the
ends of the string are equal. These results are similar to
those presented by Lambiase and Nesterenko [17] obtained
under some symplifying assumptions. There is, however, a
subtle point concerning the Lüscher term, which we would
like to discuss. For a string with fixed ends, the Lüscher
term has a contribution to the potential of the form

V L(ρ) = − (D − 2)π
24ρ

. (4.1)

Fig. 4. The solutions to the gap equations (3.7) for the La-
grange multipliers α0, α1 and metric components σ0, σ1 are
shown as functions of ρ = M0R for µ = 100, 1, and 0.1 (solid,
dashed and dash-dotted lines, respectively). In a the curves for
α0 are the lower ones and for α1 the upper ones, while those
for σ0 (above) and σ1 (below) appear in a. The minimum value
α0 can reach is zero as follows from (2.21)

The importance of this term is that it is universal, i.e.,
independent of the details of a whole class of models, in
particular, independent of the parameters of the model
under consideration. In the one-loop approximation to the
problem discussed above the potential becomes

V (ρ) = ρ + (D − 2)EC, (4.2)

where EC is given by

EC =
η(s)
2πρ

, (4.3)

and EC depends on the mass µ through s (see (2.13)) thus
apparently giving the Lüscher term a mass dependence.
It is important to note, however, that this Coulomb-like
term arises as a long-distance (large-ρ) effect. Thus strictly
speaking corrections to the Lüscher term, if any, should
be obtained after expanding (4.2) for large ρ. From our
numerical results we can see that a large ρ is equivalent
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Fig. 5. The dimensionless interquark potential V (ρ), (2.20), is
shown as a function of ρ = M0R for µ = 1.15, 0.3, 10, 100, 0.05,
0 or ∞ (from left to right) at the interception with the x axis
(short-dashed, dotted, dash-dotted, short-dash-dotted, dashed
and solid lines, respectively). When µ = 0, ∞ (dash-dotted
line) corresponding to free and fixed ends strings respectively
the potential becomes the well known Nambu–Goto potential.
As the mass µ varies between zero and infinity V (ρ) essentially
keeps its shape but reaches a vanishing value at different de-
confinement radii ρdec (see Fig. 6). In all the cases the potential
becomes linear for large values of ρ. The lines second and third
from left differ notably from the results of [17], although in [18]
the curve with µ = 10 (third) has been corrected and looks the
same as the one presented above. For small and big values of
µ the approximation of [17] seems to be good

to a large s for a given finite value of µ. Thus for large ρ,
α0 and α1 are essentially one and from (2.23) and (2.24)
the potential becomes

V (ρ) ≈ ρ
√

1 − 2λ ≈ ρ(1 − λ + ...). (4.4)

For large s we can approximate the integral involved in
the definition of λ, (2.20), with the result

λ ≈ (D − 2)π
24ρ2 − (D − 2)π

12ρ3 µ, s → ∞. (4.5)

Thus the potential becomes

V (ρ) = ρ − (D − 2)π
24ρ

+
(D − 2)π

12ρ2 µ + ..., (4.6)

leaving the Lüscher term universal.
So the study of the interquark potential for string mod-

els with masses attached to its ends is of undoubted inter-
est by itself as a mathematical problem and certainly for
the possible physical applications to the low-energy regime
of QCD. Here we have presented exact solutions to the gap
equations and the interquark potential has been obtained
for several values of µ. We see that having finite point
masses at the ends of the string has considerable effects
on the potential. Also the deconfinement radius become
a function of µ and its value could be fixed phenomeno-
logically. We have also discussed the universality of the
Lüscher term and argue that it remains universal if we

Fig. 6. The so-called deconfinement radious ρdec which is de-
fined as the value of ρ for which V (ρ = ρdec) = 0 is here
shown as a function of the mass parameter µ = m/M0. For
µ = 0, ∞ ρdec(µ) =

√
(D − 2)π/12|D=4 ≈ 0.72 as in the

Nambu–Goto case. For finite µ values ρdec lies in the inter-
val 0.31 ≤ ρdec ≤ √

(D − 2)π/12|D=4 ≈ 0.72

understand it strictly as a long-distance effect with mass
corrections coming up at higher orders in ρ−1. Finally,
the tachyon problem of string theories remains unresolved
although recently [19] there has been some discussion on
how one can possibly avoid it. The tachyon problem, how-
ever, would affect the short-distance behaviour, where the
string picture breaks down in any case. For large distances
and for any number of dimensions the string anomaly dis-
appears asymptotically since the anomalous term is ac-
companied by a ρ−2 factor [20], leaving a consistent string
model in that regime. For a recent discussion of this point
see [21].
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4. M. Lüscher, K. Symanzik, P. Weisz, Nucl. Phys. B173,

365 (1980)
5. O. Alvarez, Phys. Rev. D 24, 440 (1981)
6. J.F. Arvis, Phys. Lett. B 127, 106 (1983)
7. R.D. Pisarski, O. Alvarez, Phys. Rev. D 26, 3735 (1982);

A. Antillón, G. Germán, Phys. Rev. D 47, 4567 (1993)
8. M. Flensburg, C. Peterson, Nucl. Phys. B 283, 141 (1987);

F. Karsch, E. Laermann, Rep. Prog. Phys. 56, 1347 (1993)
9. J. Polchinski, Phys. Rev. Lett. 68, 1267 (1992); Phys. Rev.

D 46, 3667 (1992)
10. G. Germán, H. Kleinert, M. Lynker, Phys. Rev. D 46,

1699 (1992); G. Germán, M. Lynker, A. Maćıas, Phys.
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